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A series of two papers is devoted to develop a new kind of numerical method
for vibration analysis of structure, called Composite Element Method (CEM), by
combining the conventional finite element method and classical analytical theory,
aiming at utilizing both the versatility of the traditional FEM and the closed
analytical solution of classical theory. First of all, two sets of coordinate systems
are defined to describe the displacement field of discretization element: the nodal
DOF system (same as in the conventional FEM), as well as the field DOF system
of element. The goal of the former is to inherit the versatility of the conventional
FEM; the latter is to obtain the higher approximate degree of accuracy. These two
sets of coordinate systems are coupled and combined by means of the
Rayleigh–Ritz principle. Two kinds of approaches are available to improve the
CEM: (1) refining the element mesh, i.e., h-version, (2) increasing the degrees of
freedom based upon the classical solution (i.e., c-DOF), called c-version. The
numerical results show that c-version possesses a potential to lead to a
superconvergence. This paper is the first of the series concentrating on the
principle of CEM, C0 element and the related applications.
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1. INTRODUCTION

Modern large and precise structures (such as buildings, civil engineering works,
spaceshuttles, space stations, aerocraft, trains, automobiles, robotics, antennas,
satellites, manipulators, etc.) call for a demand on the accurate dynamic analysis
for both lower and higher eigenfrequencies. As to the present situation of finite
element technique [1, 2], two main kinds of methods are available to improve the
degree of accuracy. The first, and most common, involves refining the finite
element mesh whilst keeping the degree of the elements fixed. This is termed the
h-version of FEM (finite element method) or simply FEM. The second method
involves keeping the mesh size constant and letting the degree of the
approximating polynomial functions tend to infinity [3]. This approach is better
known as the p-version of the FEM, or the hierarchical finite element method
(HFEM) [4]. Unfortunately, they tend to be either low in efficiency or too complex.
For example, the resulting stiffness and mass matrix from densely refining the finite
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element mesh are quite huge. Consequently, very large eigenvalue problems must
be solved, with cost computation effort. Also the difficulty of extreme complexity
of the p-version or HFEM must be encountered [5, 6]. It is noted that the research
on the p-version or the h–p version has not yet been applied in practice. But these
topics are arousing the interest of many scientists. Also, some condensed
approaches are utilized to reduce the computational effort whilst obtaining a
higher accuracy, for instance, the substructural method and the finite strip method,
etc.

As we know, some closed analytical solutions for the components with regular
geometric shapes and simple boundary conditions can be obtained by the classical
theory. These solutions include [7]:

, longitudinal vibration problem of a bar or rod
, torsional vibration problem of a shaft or rod
, lateral transverse vibration problem of a beam
, transverse vibration problem of a membrane
, transverse vibration problem of a thin plate

But these closed analytical solutions are viable only within the scope of some
special geometry shapes and supports (i.e. simple–simple, clamped–clamped,
free–free, clamped–pinned, etc.). It is therefore desirable to combine the
advantages of classical theory and the conventional FEM to get a new finite
element with high efficiency and good accuracy. How to implement a combination
of these two approaches? The Rayleigh–Ritz principle supplies an important tool.
This is because, first, the FEM and the Rayleigh–Ritz principle are essentially
equivalent from the viewpoint of variational principle. Secondly, the
Rayleigh–Ritz principle is an inclusion principle that permits all admirable-trial
solutions satisfying the boundary conditions.

In the papers of this series, a new numerical analytical approach, i.e., Composite
Element Method, is proposed which combines the advantages of the FEM and
classical theory. More detailedly, the longitudinal bar element (C0 problem), the
torsional shaft element (C0 problem) as well as the bending beam element (C1

problem) are addressed. In the Composite Element Method, the approach in which
the degrees of freedom are increased based on the classical solution, is called the
c-version. It will be found that the c-version of the CEM method can lead to a
superconvergence.

2. COMPOSITE ELEMENT METHOD

2.1.       FEM

From a comparison between the classical approach and FEM in several aspects:
the form of solution function, solving procedure, accuracy, efficiency, versatility
and applicable scope, etc., we know that both classical theory and FEM possess
individual characteristics when being used to solve the differential equations or
mechanics problems. So we expect to develop a new method to combine the
advantages of these two methods to develop a new method. The first aim of the
new method should be to adopt the verticality of the FEM wherein the field
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function is expressed in the form of nodal values. The second aim is to embed the
analytical solution of classical theory over the domain of the element into the field
function of the discretized element. To this end, the first step which must be taken
is to define an appropriate coordinate system of element, which is used as a
fundamental frame to describe the displacement field of element. Then some
attention should be paid to the construction of displacement field based on the
given coordinate system. Meanwhile, the related boundary condition of element
must be matched. Detailed discussions are presented below.

2.2.     

(1) Strategy

As we know, a coordinate system can provide a basic framework within which
the displacement field can be built and studied. Based upon the above strategy,
we need to construct two coordinate systems, i.e., the nodal coordinate system for
adopting the conventional FEM, and the field coordinate system for utilizing the
classical theory. A nodal coordinate system utilizes the nodal displacement as the
coordinate DOF to describe the displacement field; however, the field coordinate
utilizes a set of basis functions obtained from classical theory to describe the
displacement field.

For any element, without any loss of generality, we choose the following
combination of both the polynomials and the analytical functions to describe the
displacement field

U(j)=N(j)q+f(j)c. (1)

It can be seen that U(j) is the sum of two parts:

U(j)=UFEM (j)+UCT (j) (2)

where

UFEM (j)=N(j)q (3)

UCT (j)=f(j)c (4)

where UFEM (j) is the displacement field function by FEM based on nodel DOF,
N(j) is the space-dependent shape function of the conventional FEM, UCT (j) is
the displacement field function by the classical theory based on field DOF, f(j)
is the analytical function series by classical theory. According to the above
expression, obviously, q is the nodal coordinate of the conventional FEM, also
called nodal DOF, and c is the field coordinate, also called c-DOF or c-coordinate.
It must be pointed out that the field coordinate and its basis function f(j) is not
an arbitrary function; it must satisfy some requirements, especially the boundary
conditions of element.

(2) Displacement field function of FEM

Equation (1) defines two coordinate systems. One of them is the nodal
coordinate system on which we can employ the conventional FEM.
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Fundamental to the successful implementation of the FEM is the selection of
adequate trial functions for each element. The trial functions are approximate
patterns of displacements, rotations, or other fundamental variables often
expressed in terms of the same variables at the nodes. Usually, the interpolation
polynomials in terms of nodal degrees of freedom [8] are used as the displacement
field function of the FEM. To achieve monotonic convergence, this trial function
for displacement field must be complete and compatible (or conforming). It means
that some convergence requirement must be satisfied.

(3) Displacement field function by classical theory

We can solve the differential dynamic equation of element by the classical theory
under some special compatible conditions in order to get the expression UCT (j)
of displacement field function for element.

Assume the solution to be a set of functions:

f1(j), f2(j), . . . , fn (j). (5)

A linear combination of them can form the second part UCT (j) of the displacement

UCT (j)= s
n

r=1

crfr (j) (6)

where cr is the coefficients.
Note that the function fr (j) is defined over the entire element domain with the

special values at the boundary nodes.

, Coupling boundary condition of element
In the conventional FEM, the discretized element needs to satisfy only the nodal

condition, i.e., the constructed displacement field function of element must be
interpolated by the nodal displacement or/and its slope. But this situation has a
difference for the displacement field constructed by equation (1). Since the first part
(i.e., the interpolation displacement function of FEM) N(j)q has already satisfied
the nodal conditions of element, the second part f(j)c should satisfy some other
admissible conditions. We call the conditions, which the second part f(j)c must
obey, the boundary condition of element. In other words, it means that if we utilize
the analytical result of classical theory to build the displacement field function of
element [i.e., second part of equation (1)], this analytical result is not arbitrary,
but must obey some boundary conditions.

Obviously, in a straightforward manner, we know that the displacement field
U(j) of element must satisfy the nodal condition, and if the first part N(j)q of
displacement field U(j) takes the interpolation polynomial function of the
conventional FEM, it can be found that N(j)q has already satisfield these nodal
conditions. Therefore the second part UCT (j) of U(j) must obey zero-displacement
and coupling slope conditions at the nodes of element, which are the boundary
conditions of element when using the analytical results of the classical theory
stated above.
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For the C0 continuous problem, the coupling boundary conditions are

fr (j)=j=0 =0, fr (j)=j=1 =0 r=1, 2, 3, . . . (7)

For the C1 continuous problem, the coupling boundary conditions are

fr (j)=j=0 =0, fr (j)=j=1 =0

dfr (j)
dj bj=0

=0,
dfr (j)

dj bj=1

=0 r=1, 2, 3, . . . . (8)

Arbitrarily, for the Ck continuous problem, the coupling boundary conditions are

fr (j)=j=0 =0, fr (j)=j=1 =0

dfr (j)
dj bj=0

=0,
dfr (j)

dj bj=1

=0

···
···

dkfr (j)
djk bj=0

=0,
dkfr (j)

djk bj=1

=0 r=1, 2, 3, . . .. (9)

Note that the coupling boundary conditions of element will be very important
because they are used as the boundary conditions when we solve the differential
vibration equation by the classical theory in order to obtain the analytical form
of the second part fr (j) of U(j). Moreover, fortunately, in most cases, the fr (j)
under simply supported boundary conditions can be exactly obtained by solving
the differential equation of classical theory under the coupling boundary
conditions.

, Trial functions under the coupling boundary condition
In structural engineering, longitudinal bar, torsional shaft and bending beam are

the basic components. Obviously, longitudinal bar and torsional shaft belong to
the C0 problem, and bending beam belongs to the C1 problem. Their exact
analytical solutions under the coupling boundary conditions are presented below
[9].

(1) C0 problem (longitudinal bar)

As discussed above, the Composite Element Method requires the analytical
solution under the coupling boundary conditions of a longitudinal bar, i.e.,

U(x)=x=0 =0, U(x)=x= l =0 (10)

where U(x) is the longitudinal displacement.
Actually, this is the case of the clamped–clamped bar. The corresponding

solution can be obtained as

Ur (x)= cr sin brx r=1, 2, 3, . . .. (11)
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where

br = r
p

l
. (12)

Here cr are a set of constants. Finally, the solution function u(x, t) is given as from
equation (11)

u(x, t)=Ur (x) · Gr (t)

= cr sin brx · sin vrt r=1, 2, 3, . . . (13)

where

v2
r =

E
r

b2
r . (14)

E is the Young’s modulus and r is the density.
Note that Ur (x) are a set of natural mode shape functions, which will be

combined or embedded into the displacement field of bar element in Composite
Element Method together with the interpolation polynomial function of the
conventional FEM.

(2) C0 problem (torsional shaft)

The Composite Element Method requires the analytical solution under the
coupling boundary conditions for a torsional shaft, i.e.,

U(x)=x=0 =0, U(x)=x= l =0 (15)

where U(x) is the torsional displacement.
Similarly, this is the case of the clamped–clamped shaft. The corresponding

solution can be found as

Ur (x)= cr sin brx, r=1, 2, 3, . . . (16)

where

br = r
p

l
(17)

Here cr are a set of constants. Finally, the solution q(x, t) is given by

q(x, t)=Ur (x) · Gr (t)

= cr sin brx · sin vrt, r=1, 2, 3, . . . (18)

where

v2
r =

G
r

b2
r . (19)

G is the shear modulus and r is the density.
Note that Ur (x) are a set of natural mode shape functions, which will be

combined or embedded into the displacement field of torsional element in
Composite Element together with the interpolation polynomial function of the
conventional FEM.
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2.3.     

Presumably, for successful finite element solutions (including composite
element), the displacement trial functions should lead to an analysis that
monotonically converges to the exact solution as the size of the elements tends to
zero [10], i.e., the accuracy of the solution increases as the element mesh is
continuously refined. To achieve monotonic convergence, the element must be
complete and compatible (or conforming). The requirement for completeness
means that the displacement functions must be able to represent the rigid body
displacements and constant strain states [11]. Compatibility assures that no gaps
occur within the elements and between the elements when the system of elements
is assembled and loaded [11].

Below we discuss the completeness and compatibility of the Composite Element
Method.

(1) Completeness of composite element

The trial function of Composite Element is composed of two parts, one of which
is the nodal interpolation function of the conventional FEM. If it satisfies the
requirement for completeness, we can say that the trial function of CEM combined
by FEM and classical theory is sure to be complete, and is able to represent the
rigid displacement and constant strain, which will be verified in the numerical
examples later.

(2) Compatibility of composite element

To satisfy the condition of compatibility, the trial functions should be chosen
such that (a) they are continuous within the element, and (b) at the element
interfaces at least the first k derivatives are continuous, where (k+1) is the highest
appearing in the functional of the principle of virtual work, i.e., the highest
derivative appearing in the strain-displacement matrix B(x). Trial functions are
said to exhibit Ck continuity if their derivatives of order k are continuous.
Obviously, a longitudinal bar element and a torsional shaft element belong to the
sort of C0 continuity, and a bending beam element belongs to the sort of C1

continuity. For a longitudinal bar element, a torsional shaft element and a bending
beam element of CEM, we can verify that they all satisfy the compatibility
requirement. The reason is that the trial function of CEM has two parts: one part
comes from the conventional FEM which meets the compatibility requirement and
the other is the analytical solution of classical theory under the special compatible
boundary conditions which possesses the derivative of arbitrary order and also
meets all compatibility requirements.

(3) h-version and c-version of composite element

To obtain a higher accuracy, two approaches are available to improve the CEM:
, Refining the element mesh, i.e., h-version.
, Increasing the degrees of freedom based on the classical solutions (i.e.,

c-DOF), called c-version.
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Further discussions can show that the h-version of CEM is completely similar
to the conventional FEMs, but the c-version of the CEM is not entirely similar
to the p-version of the conventional FEM because each basis function in CEM
is obtained by the analytical solution of classical theory which is a continuous
function with the arbitrary order of continuous derivative, not a polynomial. So,
the c-version of the Composite Element Method can improve the accuracy and
efficiency with less computation effort. It is especially true for the computation of
eigenvalue and eigenvector in structural dynamics. It will be found that the
Composite Element Method possesses a possibility to lead to a superconvergence.
In the following sections, a large number of numerical examples will confirm this.

2.4.      

As we know, the discretization of a continuous problem has been approached
differently by the mathematician and the engineer. The former has developed
general techniques applicable directly to differential equations governing the
problem, such as finite difference approximation, various weighted residual
procedures, or approximate techniques of determining the stationary of a properly
defined ‘functional’. The engineer, on the other hand, often approaches the
problem more intuitively by creating an analogy between real discrete elements
and finite portions of a continuum domain. For instance, in the field of solid
mechanics, [12–14], in the early forties, showed that a reasonably good solution
to an elastic continuum problem could be obtained by substituting small portions
of the continuum by an arrangement of simple elastic bars. Later, in the same
context, Argyris [15] and Turner et al. [16] showed that a more direct, but no less
intuitive, substitution of properties could be made much more directly by
considering that small portions or ‘elements’ in a continuum behave in a simplified
manner.

It is from the engineering ‘direct analogy’ view that the term ‘finite element’ has
been born. Clough [17] appears to be the first to use this term, which implies a
direct use of standard methodology applicable to discrete systems. Conceptually
and as well as from the computational viewpoint, this is of utmost importance.
The first allows an improved understanding to be obtained, the second the use of
a unified approach to the variety of problems and the development of standard
computational procedures. Since the early sixties much progress has been made,
and today the purely mathematical and ‘analogy’ approaches are fully reconciled.

The Composite Element Method developed by the series of papers has a
situation completely similar to finite element both intuitively and mathematically.
First, the Composite Element Method has the same physical discretization as
FEM, and all analyses follow a standard procedure which is universally adaptable
to discrete systems. Second, an inclusion principle, i.e., the Rayleigh–Ritz
principle, is mathematically utilized to construct the displacement function of
element. Theoretically, the Composite Element can include the conventional finite
element; in other words, the conventional finite element is a special case of
Composite Element wherein the field coordinate based upon the classical theory
(i.e., c-DOF) is neglected (a related discussion is presented below).
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2.5.       

According to the philosophy of constructing Composite Element, from equation
(2), if we let c=0 (i.e., c-DOF is neglected), in field function of element will be

U(j)=UFEM (j)

=N(j) · q. (20)

Obviously, it is the field function of the conventional FEM. In this case, the
composite element is reduced as a conventional finite element.

Now we give some comments on the comparisons between CEM, p-version of
FEM and HFEM (hierarchical FEM).

(1) The conventional finite element method

The basic idea of FEM is piecewise approximation. The functions used to
represent the behavior of the solution within an element are called interpolation
functions or approximating models. Polynomial type of interpolation functions
have been most widely used in the literature.

Theoretically a polynomial of infinite order corresponds to the exact solution.
But in practice we take polynomials of finite or only as an approximation.
Although trigonometric functions also possess some of these properties, they are
seldom used in the finite element analysis [11].

There are two main ways to improve the accuracy of the conventional FEM.
The first, and most common, involves refining the element mesh whilst keeping
the order of the interpolation polynomials of element fixed. This is termed the
h-version of the FEM or simply the FEM. The second method involves keeping
the mesh size constant and increasing the order of the interpolation polynomial.
This approach is better known as the p-version of the FEM. The well known
hierarchical finite element method (HFEM) is one of the p-versions. In recent years
the adaptive methods have come to be the focus of interest. Various papers [18–21]
address the equations of adaptive approaches in the FEM. In two dimensional
adaptive research code FEARS [22] and PLTMG [23] are available. Both codes
deal with the h-version and linear (p=1) elements. However, there is no adaptive
h–p version code and only little work has been done addressing this question.

The goals in a successful adaptive h–p version are twofold: (a) the method
should lead to a discretization that corresponds to a solution with a specified
accuracy and (b) this should be accomplished in a minimum number of steps with
a minimum number of unknowns. Such a mesh is termed ‘optimal’.

But it must be pointed out that since the p-version of FEM is based upon adding
inner nodes of element and taking a higher order of polynomial, some
computational difficulty and error may occur.

(2) CEM and p-version of FEM

In CEM, the bases functions of c-DOF, i.e., higher order functions, come from
the exact or near-exact analytical solution under some conditions. Generally, these
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are trigonometric functions with excellent mathematical properties. Also the bases
functions show an independence on the nodes and are provided with the nature
of hierarchical spectra.

As to p-version of FEM, the bases functions come from the higher order
interpolation functions in terms of nodes (corner nodes plus additional nodes).
Generally, these functions have the form of higher order polynomials. So, they
tend to be either low in efficiency or too complex in terms of numerical treatment
(especially in calculation of integration), or they may even fail due to large errors
in numerical computing.

(3) CEM and HFEM

The nature of hierarchical spectra is included in the bases functions of CEM
since they are chosen from the exact or near-exact analytical solution under some
compatible conditions. Generally, they have the form of trigonometric series.
Therefore it would be a merit to carry out the calculation of integration
conveniently and exactly. Especially in the development of isoparametric element,
CEM will show some good numerical properties.

As to HFEM, the hierarchical bases functions are derioved from Rodrigue’s
form of Legendre orthogonal polynomials. Generally, these polynomials are
complicated. It would be very difficult to treat them on a large scale (especially
in the calculations of integrations). Moreover, it could bring about larger
calculation errors. Maybe it is one of the reasons that HFEM is not popularly
applied in practice so far.

The so-called CEM is, actually, a new type of FEM which combines the
versatility of the conventional FEM and the high accuracy of the classical
analytical method. Here, composite means combining or coupling. So CEM
inherits the excellent properties of h-version, p-version and hierarchical FEM, and
has a perfect theoretical foundation. It can be found that CEM could be reduced
to a traditional FEM or HFEM with some simplified treatment (e.g., neglecting
c-DOF). In other words, a conventional FEM or HFEM (including h-version and
p-version) can be considered as a special case of CEM under some conditions. It
is desired that CEM become a potential and general method in future with further
development.

2.6.      

From the above discussion, we know that the displacement field of element
consists of two parts, i.e.,

U(j)=UFEM (j)+UCT (j)

=N(j)q+f(j)c

=S(j) · d (21)
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where

S(j)= [N(j) f(j)]

d=[qT cT]

= [q1 q2 c1 c2 · · · cn ]T. (22)

The function matrix S(j) is defined as the generalized shape function matrix of
CEM which consists of both the shape function N(j) of the conventional FEM
and the mode shape f(x) of the analytical solution of classical theory. The vector
d is called the generalized coordinates (or DOF) of CEM which consists of both
the nodal DOF q of the conventional FEM and the mode coordinate c of the
analytical solution of classical theory.

From equation (21), the strain o can be expressed as

o=[1]U(j)

= [1]S(j) · d=B(j) · d (23)

where

B(j)= [1]S(j)

= [1][N(j) f(j)] (24)

is called the generalized strain–displacement matrix of CEM which is also
composed of two parts: the one of the conventional FEM and the one of classical
theory. [1] is the operator of strain–displacement relation.

Having the generalized shape function matrix S(j) and the generalized
strain–displacement matrix B(j), it is easy to derive the stiffness matrix ke and mass
matrix me of CEM by the general procedure of the conventional FEM, i.e.,

ke =gV

BTDB dV (25)

me =gV

rSTS dV (26)

where D is the elastic matrix, and the superscript e denotes each element.

2.7.      

The implementation procedure of Composite Element Method is completely
similar to that of the conventional FEM, except for introducing c-DOF into the
displacement field of element. As to the displacement field of element, we already
have a standard way to describe it [see equation (2)]. The corresponding stiffness
and mass matrices with an arbitrary c-DOF number will be derived later. So, all
implementation procedure can completely follow that of the conventional FEM,
such as, the assemblage of element matrices, the treatment of boundary conditions,
the solution of global equation, etc. Also the Composite Element Method can be
completely inlaid into the present FEM software with less programming effort (see
Figure 1).
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Figure 1. Implementation procedure of CEM.

3. C0 ELEMENTS

3.1.     

Consider the pin-jointed bar element shown in Figure 2 where the local x-axis
is taken in the axial direction of the element with its origin at the corner (or local
node) 1.

U(x)=UFEM (x)+UCT (x). (27)

Figure 2. Constructing of CEM for longitudinal bar.
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From the above discussion, we can construct the displacement function U(x) as

U(x)=UFEM (x)+UCT (x)

=01−
x
l1 q1 +

x
l
q2 + c1 sin b1x+ c2 sin b2x+· · ·+ cn sin bnx

=01−
x
l1 q1 +

x
l
q2 + c1 sin p

x
l
+ c2 sin 2p

x
l
+· · ·+ cn sin np

x
l

=N(x)q+f(x)c

=S(x) · d (28)

where

S(x)= [N(x) f(x)]

=$01−
x
l1 x

l
sin p

x
l

sin 2p
x
l

· · · sin np
x
l% (29)

d=[qT cT]

= [q1 q2 c1 c2 · · · cn ]T. (30)

From equation (28), the axial strain can be expressed as

o=
1U(x)

1x

=
1S(x)

1x
· d=B(x) · d (31)

where

B(x)=
1S(x)

1x

=$−1
l

1
l

p

l
cos p

x
l

2p

l
cos 2p

x
l

· · ·
np

l
cos np

x
l% (32)

is called the generalized strain–displacement matrix of CEM which is also
composed of two parts: the one of the conventional FEM and the one of classical
theory.

When the generalized shape function matrix S(x) and the generalized
strain–displacement matrix B(x) are available, it is easy to derive the stiffness
matrix ke and mass matrix me of Composite Element by the general procedure of
the conventional FEM.
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3.2.     

Now we derive the formulation in local coordinates. As discussed above, the
displacement field function U(x) in the one dimensional case (longitudinal bar) is
expressed by equation (27). So, the matrix S(x) of shape function and the matrix
B(x) of strain–displacement relation can be found from equations (29) and (32)
respectively. Further, we can calculate the stiffness matrix ke of element according
to the expression (25) as

q1 q2 c1 c2 · · · · · · cr

q11 −1

−1 1 0 q2

p2

2
c1

ke =
EA
l

· 4p2

2
0

(33)

0 · · ·

c2

0 · · ·

···

r2p2

2

···

cr

Similarly, from the expression (26) the consistent mass matrix me of element is
given as

q1 q2 c1 c2 · · · · · · cr

1
3

1
6

q1

1
6

1
3

symmetric q2

1
p

1
p

1
2

c1

me = rAl ·
1
2p

−
1
2p

1
2

0 c2 (34)

···
···

· · ·
···

···
··· 0 · · ·

···
1
rp

(−1)r+1

rp
1
2

cr

Note that the generalized coordinate de is composed of two parts: the nodal
coordinate q (or nodal DOF) and the c-coordinate (or c-DOF) c:

de =[q1 q2 c1 c2 · · · cr ]T. (35)

K L
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
k l

K L
G G
G G
G G
G G
G G
G GG G
G G
G G
G G
G G
G G
k l
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Figure 3. Coordinate transformation in planar case.

Stiffness and mass matrices of the longitudinal bar element in the Composite
Element Method possess same properties as those of the conventional FEM [3],
i.e.,

(1) Both the stiffness matrix and the mass matrix are symmetric.
(2) The stiffness matrix in the Composite Element Method is positive

semi-definite. Also, after elimination of rigid body motion, a stiffness
matrix will be positive definite.

(3) The diagonal elements of both stiffness matrix and mass matrix are always
positive.

3.3.  

As we know, the element characteristic matrices are derived in the local
coordinate system suitably oriented for minimizing computational effort.
However, the local coordinate systems may be different for different elements. In
such a case, before the element equations can be assembled, it is necessary to
transform the element equations derived in local coordinate systems so that all the
elemental equations are referred to a common global coordinate system.

In order to find the stiffness matrix and the mass matrix of the bar element of
the Composite Element Method in the global coordinate system, we need to search
the transformation matrix. Let a transformation matrix Te exist between the local
and the global coordinate systems such that

de =Ted�e (36)

where d� e is the generalized coordinates in the global coordinate system. Now, we
use superscript e to indicate each element. The stiffness matrix Ke and the mass
matrix Me of the element corresponding to the global coordinate system are given
as [11]

Ke =TeTkeTe (37)

Me =TeTmeTe (38)

(1) Planar case

Let the (local) nodes 1 and 2 of the bar element correspond to nodes i and j
respectively of the global system as shown in Figure 3.
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The local displacements q1 and q2 can be resolved into components ui , vi and uj , vj

parallel to the global x, y axes respectively. The two sets of displacements are
related as

q1 = ui cos g+ vi sin g (39)

q2 = uj cos g+ vj sin g (40)

where g is the angle between the line ij and the direction ox. According to the
transformation relations (39) and (40), from equation (27) the displacement field
of the element can be written as

U(x)=Se(x)de

=01−
x
l1 q1 +

x
l
q2 + s

n

r=1

cr sin rp
x
l

=01−
x
l1 (ui cos g+ vi sin g)+

x
l

(uj cos g+ vj sin g)+ s
n

r=1

cr sin rp
x
l

=Se(x)Ted�e (41)

where

Se(x)=$01−
x
l1 x

l
sin p

x
l

sin 2p
x
l

· · · sin np
x
l% (42)

is the shape function matrix,

ui vi uj vj c1 c2 · · · · · · cr

lij mij 0 0 q1

0 0 lij mij 0 q2

1 c1

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

Te = 1 0 c2
(43)

· · ·
···

0 0 · · ·
···

1 cr

is the transformation matrix,

d�e =[ui vi uj vj c1 c2 · · · cr ]T (44)

is the generalized coordinates in the global coordinate system, and lij , mij denote
the direction cosines of angles between the line ij and the directions ox, oy,
respectively. The direction cosines can be computed in terms of the global
coordinates of nodes i and j as

lij =cos g=
xj − xi

l
, mij =sin g=

yj − yi

l
(45)
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where (xi , yi ) and (xj , yj ) are the global coordinates of nodes i and j respectively,
and l is the length of the element ij given by

l=z(xj − xi )2 + ( yj − yi )2 . (46)

With the help of the expression of transformation matrix (43), we can compute
the stiffness and mass matrices in the global coordinate system with equations (37)
and (38).

(2) Spatial case

In a similar manner, we can derive the same transformatioin relations in the
spatial case as shown in equation (36), but here the Te matrix is given by

ui vi wi uj vj wj c1 c2 · · · · · · cr

lij mij nij 0 0 0 q1

0 0 0 lij mij nij 0 q2

1 c1

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

Te =
1 0 c2

(47)

· · ·
···

0 0 · · ·
···

1 cr

The direction cosines can be computed in terms of the global coordinates of nodes
i and j as

lij =
xj − xi

l
, mij =

yj − yi

l
, nij =

zj − zi

l
(48)

where (xi , yi , zi ) and (xj , yj , zj ) are the global coordinates of i and j respectively,
and l is the length of the element ij given by

l=z(xj − xi )2 + (yj − yi )2 + (zj − zi )2. (49)

From the components of the coordinate transformation matrix (43) and (47),
we can find that the transformation is carried out only for the nodal coordinate,
and not for the c-coordinate. The reason for this is that the c-coordinate is always
defined in the local coordinate system with a closed form, contributes only to the
internal displacement field of the element and does not therefore influence its edge
displacements. Since the transformation matrix Te is the matrix of direction cosines
relating the two coordinate systems, it is orthogonal.

3.4.   

Similar to the longitudinal bar element, a torsional shaft element belongs to the
C0 continuity problem. So it has the same formulations of stiffness matrix, mass
matrix and transformation matrix as the longitudinal bar element.
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4. NUMERICAL VERIFICATIONS

4.1.  - 

Now, we give a detailed validation for the Composite Element Method, using
a clamped-free rod as an example. The contents include: discretizations of 1, 2 as
well as 4 elements, effect of the number of c-DOF, and effect of the allocation of
c-DOF.

Consider the longitudinal vibration of a clamped-free rod as shown in
Figure 4(a). L is the length of the rod, r, E are the mass density and Young’s
modulus respectively. Now, we idealize this bar into 1 element, 2 elements, and
4 elements, and then apply the Composite Element Method to calculate the natural
frequencies.

Let

l2
i =

rL2

E
v2

i , i=1, 2, . . . (50)

where vi is the natural frequencies. We present the results below.

(1) Discretization of 1 element

If we take total rod as 1 bar element, then consider several calculating schemes
wherein 1c-DOF, 3c-DOF, 7c-DOF, 11c-DOF and 15c-DOF are chosen. Various
orders of eigenvalues l2

i are presented in Table 1, in comparison with the exact
solutions.

From the results shown in Table 1, we can see that the resultant eigenvalues
from l2

1 to l2
n (here n is the number of the c-DOF), i.e., within the scope of c-DOF

number in each scheme, are very close to the exact solutions (maximum relative
error Q3%). For example, in the scheme of CEM (1×15c), i.e., using one CEM
element with 15c-DOF, the total-DOF is 16 (i.e., c-DOF plus nodal DOF), the
resultant eigenvalues from l2

1 to l2
15 are close to the exact solutions, and the

maximum relative error (i.e., for l2
15) only reaches 2·12%.

(2) Discretization of 2 elements

Now, we idealize this clamped-free rod into 2 elements [shown in Figure 4(b)].
Consider several calculating schemes wherein FEM, 1c-DOF, 3c-DOF, 5c-DOF,
7c-DOF are chosen. Various orders of eigenvalues l2

i in various schemes are
presented in Table 2, which are compared with the exact solutions.

Figure 4. A clamped-free rod and its discretization (in three schemes).
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The results of Table 2 also show that the calculated eigenvalues from l2
1 to l2

n

within the scope of c-DOF number in each scheme approximate to the exact
solutions (maximum relative error Q5%). For instance, in scheme of CEM
(2×7c), i.e., using two CEM elements with 7 c-DOF, the total-DOF is 16 (i.e.,
c-DOF plus nodal DOF), the resulted eigenvalues from l2

1 to l2
14 are very close to

the exact solutions, and the maximum relative error (i.e., for l2
14) only reaches

3·38%.
Obviously, a comparison of Tables 1 and 2 shows that, in the case of the same

computational efforts used, the results of the scheme with 2 elements discretization
are not better than these with 1 element discretization.

(3) Discretization of 4 elements

Here, we idealize this clamped-free rod into 4 elements shown in Figure 4(c),
and also consider several calculating schemes: FEM, 1c-DOF, 2c-DOF, 3c-DOF.
Various orders of eigenvalues l2

i in various schemes are presented in Table 3, which
are compared with the exact solutions.

The results of Table 3 also show that the calculated eigenvalues from l2
1 to l2

n

within the scope of c-DOF number in each scheme very accurately approximate
to the exact solutions (maximum relative error Q5·5%). For instance, in the
scheme of CEM (4×3c), i.e., using four CEM elements with 3 c-DOF, the
total-DOF is 16 (i.e., c-DOF plus nodal DOF), the resultant eigenvalues from l2

1

to l2
12 are very close to the exact solutions, the maximum relative error (i.e., for

l2
12) only reaching 4.62%.
Obviously, a comparison of Tables 1, 2 and 3 shows that, in the case of an equal

amount of effort, the results of a scheme with 4 elements discretization (including
c-DOF) are not better than those with 1 or 2 element discretization.

(4) Effect of number of c-DOF

If we fix the number of total DOF as 8, then consider several schemes: CEM
(1×7c) (i.e., total c-DOF is 7), CEM (2×3c) (i.e., total c-DOF is 6), CEM
(4×1c) (i.e., total c-DOF is 4), FEM (i.e., total c-DOF is 0). The purpose is to
investigate the effect of number of c-DOF on eigenvalues with the computational
effort remaining the same. The detailed computational results and comparisons
between them are presented in Table 4.

From Table 4, we find that the accuracy achieved by the Composite Element
is greatly superior to that by the conventional FEM. Moreover, the scheme with
more c-DOF is superior to that with less c-DOF. Note that the above comparison
is based on the same amount of computational effort used (i.e., total-DOF of each
scheme is 8). We compare the errors of each scheme with the exact solution: as
to l2

7 , the relative error of the CEM (1×7c) scheme is 2·88%, and the error of
the FEM (8e) scheme already reaches 44·3%; as to l2

6 , the relative error of the
CEM (1×7c) scheme is 1·51%, that of the CEM (2×3c) scheme is 4·84%, and
that of the FEM (8e) scheme already reaches 38·5%; as to l2

4 , the relative error
of the CEM (1×7c) scheme is 0·452%, that of the CEM (2×3c) scheme is
0·776%, that of the CEM (4×1c) scheme is 4·98%, and that of the FEM (8e)
scheme already reaches 16·5%; as to l2

1 , the relative error of the CEM (1×7c)
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scheme is 0·0078%, that of the CEM (2×3c) scheme is 0·014%, that of the CEM
(4×1c) scheme is 0·021%, and that of the FEM (8e) scheme already reaches
0·32%.

(5) Effect of allocation of c-DOF

We consider the case of total-DOF=12 and total c-DOF=8 when using 4
CEM elements. If total-DOF (=12) and total c-DOF (=8) are fixed in various
computational schemes, we investigate the effect of allocation of c-DOF on results.
For example, the scheme CEM (4×2c) uses 4 CEM elements, each having
2c-DOF; the scheme CEM (3c1c3c1c) uses 4 CEM elements: the first element
takes 3c-DOF, the second element takes 1c-DOF, the third element takes 3c-DOF
and the fourth element takes 1c-DOF; and the schemes CEM (1c3c1c3c), CEM
(4c0c4c0c), CEM (0c4c0c4c) have a similar representation. All these schemes have
a common feature: total-DOF=12, total c-DOF=8. The calculated results and
comparisons between them are presented in Table 5.

The results in Table 5 show that the schemes with even allocation of c-DOF
is obviously superior to other schemes. The reason lies in that c-DOF is a very
important aspect of describing the displacement field and any partly absent and
poor allocation of c-DOF will reduce the ability of c-DOF. A discussion on
c-version will further present some more details on this aspect later.

4.2.       FEM

We will compare the Composite Element Method and FEM from two aspects
of h-version and c-version. Below all comparisons are symbolized by the
computation effort, i.e., total-DOF.

Figure 5. The relative errors of the 1st-order eigenvalue for a clamped-free rod.
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(1) h-version

The h-version of the Composite Element Method is completely similar to one of
FEM, i.e., improving the accuracy by refining the element mesh. In the cases
of using the 1c-DOF composite element and the 2c-DOF composite element, we
present the detailed results of h-version in Tables 6 and 7 respectively.

, 1c element
In the case of using the 1c-DOF composite element, for a clamped-free rod

shown in Figure 4, we consider the following schemes: when total-DOF is assigned
as 6, three 1c-DOF elements (i.e., CEM (3×1c) and 6 FEM elements (i.e., FEM
(6e)) are used; when total-DOF is assigned as 12, six 1c-DOF elements (i.e., CEM
(6×1c)) and 12 FEM elements (i.e., FEM (12e)) are used; when total-DOF is
assigned as 18, using nine 1c-DOF elements (i.e., CEM (9×1c)) and 18 FEM
elements (i.e., FEM (18e)) are used. All results are listed in Table 6. Relative errors
are shown in Figures 5–8.

, 2c element
In the case of using the 2c-DOF composite element, for a clamped-free rod

shown in Figure 4, we consider the following schemes: when total-DOF is assigned
as 6, two 2c-DOF elements (i.e., CEM (2×2c)) and 6 FEM elements (i.e., FEM
(6e)) are used; when total-DOF is assigned as 12, four 2c-DOF elements (i.e., CEM
(4×2c)) and 12 FEM elements (i.e., FEM (12e)) are used; when total-DOF is
assigned as 18, six 2c-DOF elements (i.e., CEM (6×2c)) and 18 FEM elements
(i.e., FEM (18e)) are used. All results are listed in Table 7. Relative errors are
shown in Figures 5–8.

(2) c-version

Previously, many numerical results of increasing the c-DOF have shown high
efficiency and good approximation of the CEM on eigenvalues, especially for
higher-order eigenvalues (see Tables 2–5). Now, also for a clamped-free rod shown
in Figure 4, we present a more detailed comparison of the c-version of the
Composite Element Method with the conventional FEM. The numerical results
are listed in Table 8 and the relative error curves are shown in Figures 5–8. The
c-version of the Composite Element Method can lead to a superconvergence for
computing the eigenvalues of a structure, especially for higher-order eigenvalues.
For instance, for l2

1 , the result (total-DOF=4) of the c-version of the Composite
Element Method will nearly correspond to that (total-DOF=18) of the FEM; for
l2

4 , the result (total-DOF=6) of the c-version of the Composite Element Method
will be better than that (total-DOF=18) of the FEM; for higher-order eigenvalue
l2

15, the relative error of c-version (total-DOF=18) is only 0·998%, but the
relative error of FEM (total-DOF=18) already reaches 44·3%.

4.3. 

From the numerical results above, we can sum up some features of the h-version
and c-version of the Composite Element Method as follows.

(1) The c-DOF of CEM has a powerful potential to improve the accuracy of
analysis. Therefore, in choosing the trial function of displacement field, increasing
the number of c-DOF and decreasing the number of nodal DOF of element will
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significantly improve the accuracy for dynamic analysis of a structure. Meanwhile,
in the case of multi-discretization elements, the scheme with the even allocation
of the c-DOF for each element is superior to other schemes.

(2) The convergence of the h-version and the c-version of the composite element
is obviously superior to that of conventional FEM. With less computation effort,
both the h-version and the c-version of CEM can approximate the desired
solution. Usually, against the computational effort, the error of CEM is one order
of magnitude less than that of the conventional FEM.

(3) For lower order eigenvalues, both the h-version and the c-version of the
CEM can lead to a superconvergence, although the c-version of CEM is superior
to the h-version of CEM. It means that, with only few c-DOF, the Composite
Element Method can obtain a good result. For higher order eigenvalues, only the
c-version of the Composite Element Method can continue to lead to a
superconvergence.

5. APPLICATIONS

5.1.    7  

Let us consider the case of a structure made of 7 bars [24] shown in Figure 9,
and find the natural frequencies and modes of free vibration. The members are
hinged at joints in such a way that they contribute to the global stiffness only

T 3

l2
i of various schemes in case of 4 elements discretization

FEM (4e)* CEM (4×1c) CEM (4×2c) CEM (4×3c)
Exact c-DOF:0 c-DOF:4 c-DOF:8 c-DOF:12

Order [(2r−1)p/2]2 Total-DOF:4 Total-DOF:8 Total-DOF:12 Total-DOF:16

l2
1 2·467401 2·499269 2·467922 2·467850 2·467470

l2
2 22·20661 24·87211 22·28786 22·23677 22·21473

l2
3 61·68503 82·07272 62·81638 61·84864 61·77038

l2
4 120·9027 171·6279 126·9223 121·3352 121·2966

l2
5 199·8595 233·6277 201·1083 200·9905

l2
6 298·5555 384·9870 303·0808 300·7531

l2
7 416·9908 598·5134 431·7375 420·2496

l2
8 555·1652 799·6738 585·2877 559·4969

l2
9 713·0789 898·5939 721·1412

l2
10 890·7318 1198·133 909·1962

l2
11 1088·124 1582·031 1130·756

l2
12 1305·255 1893·178 1365·497

l2
13 1542·126 2024·445

l2
14 1798·735 2467·178

l2
15 2075·084 3025·804

l2
16 2371·172 3449·116

* Note: the symbol FEM (4e) of the Table 3 denotes using 4 bar elements of the conventional
FEM, CEM (4×1c) means using 4 CEM elements with 1c-DOF each, and so on.
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T 4

l2
i of various schemes in case of total-DOF=8

CEM (1×7c) CEM (2×3c) CEM (4×1c) FEM (8e)
Exact c-DOF:7 c-DOF:6 c-DOF:4 c-DOF:0

Order [(2r−1)p/2]2 Total-DOF:8 Total-DOF:8 Total-DOF:8 Total-DOF:8

l2
1 2·467401 2·467595 2·467743 2·467922 2·475339

l2
2 22·20661 22·22286 22·25608 22·28786 22·85585

l2
3 61·68503 61·81663 62·09487 62·81638 66·78001

l2
4 120·9027 121·4490 121·8409 126·9223 140·8074

l2
5 199·8595 201·5406 202·8309 233·6277 254·2591

l2
6 298·5555 303·0586 313·0020 384·9870 413·5462

l2
7 416·9908 429·0039 554·5638 598·5134 601·8537

through their extension stiffness. The related data are as follows: span
L=2l=4 m, height h=2 m, cross-section area A=0·001 m2, density
r=8000 Ns2/m4, Young’s modulus E=2·1×1011 N/m2.

First, we consider the case of an element making an angle g with the x axis
[Figure 9(b)]. Passing from the local axial displacements [qi qj ] to the global
displacements, [ui vi uj vj ] is expressed by the transformation

qi = ui cos g+ vi sin g (51)

qj = uj cos g+ vj sin g. (52)

If we use the composite element, the transformation relations between the local
coordinate de and the global coordinate d�e is expressed as

de =Ted�e (53)

where

de =[qi qj c1 c2 · · · cn ]T (54)

d�e =[ui vi uj vj c1 c2 · · · cn ]T (55)

c1, c2, . . . , cn are the c-DOF (c-coordinate).
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where Mcq and Mcc are the sub-matrices as follows
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Figure 6. The relative errors of the 3rd-order eigenvalue for a clamped-free rod.

Figure 7. The relative errors of the 6th-order eigenvalue for a clamped-free rod.
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Figure 8. The relative errors of the 10th-order eigenvalue for a clamped-free rod.

(2) Solution of free vibration equation

According to the basic equation of free vibration, we have

Kd�=v2Md� (61)

where d� is the generalized coordinates of the global system which consists of nodal
coordinates of FEM and c-coordinates, i.e.,

d�=[u2 v2 u3 v3 u4 v4 c11 c12 c21 c22

c31 c32 c41 c42 c51 c52 c61 c62 c71 c72]T. (62)

Substituting equations (56) and (58) into equation (61), we solve equation (61) and
obtain the various orders of natural frequencies vi , which are compared with the
results of the conventional FEM shown in Table 9.

(3) Natural mode shapes

Parts of the natural mode shapes are demonstrated in Figures 10–13.

5.2.    15  

Let us consider a more complicated truss structure composed of 15 bars [24]
shown in Figure 14. The members are hinged at joints in such a way that they
contribute to the global stiffness only through their extension stiffness. The basic
data are the same as the truss shown in Figure 9, i.e., span L=4l=8 m, height
h=2 m, cross-section area A=0·001 m2, density r=8000 Ns2/m4, Young’s
modulus E=2·1×1011 N/m2.
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Figure 9. 7-bar structure.

T 9

Various orders of vi by CEM (7×2c), CEM (7×1c) and FEM

By CEM (7×2c) (Hz) By CEM (7×1c) (Hz)
c-DOF:14 c-DOF:7 By FEM (Hz)

Order Total-DOF:20 Total-DOF:13 Total-DOF:6

v1 1648·26 1648·52 1683·52
v2 1741·32 1741·66 1776·28
v3 3113·83 3119·12 3341·37
v4 4567·69 4600·60 5174·35
v5 4829·70 4870·58 5678·18
v6 7379·96 7380·83 8315·40
v7 7532·30 8047·93
v8 8047·93 8272·61
v9 9997·48 11167·57
v10 10567·43 12051·90
v11 12282·63 14359·31
v12 13296·29 15525·68
v13 13654·89 16792·68

The analysis procedure for this truss by the Composite Element Method is
completely similar to the above example. Therefore, we will focus on the analyses
and comparisons of results.

(1) Natural frequencies

We take 1c-DOF and 2c-DOF for each element of truss, then compare the
calculated natural frequencies with the results of FEM, which are shown in
Table 10.

(2) Natural mode shapes

Parts of the natural mode shapes of the 15-bar truss structure are shown in
Figures 15–17.

(3) Comments

The results of Tables 9 and 10 show us that the CEM can obtain higher-accuracy
natural frequencies than the conventional FEM, especially for higher-order
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Figure 10. The first-order natural mode of 7-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v1CEM =1648·26 Hz; v1FEM =1683·52 Hz.

Figure 11. The 3rd-order natural mode of 7-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v3CEM =3113·83 Hz; v3FEM =3341·37 Hz.

Figure 12. The 6th-order natural mode of 7-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v6CEM =7379·96 Hz; v6FEM =8315·40 Hz.

Figure 13. The 10th-order natural mode of 7-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v10CEM =10 567·43 Hz.
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Figure 14. 15-bar truss.

frequencies. For instance, as to v1 of the 7-bar truss, the relative error between
CEM and FEM is 2·14%; as to v3, 7·31%; as to v6, 12·7%. For the 15-bar truss,
as to v1, the relative error between CEM and FEM is 0·36%; as to v6, 5·43%;
as to v14, 14·7%. The natural mode configurations shown in Figures 15–17 also
reflect the difference in the results between the CEM and the FEM, i.e., for
lower-order modes, the error between them is not large, but, for higher-order
modes, the error is obvious.

T 10

Various orders of vi by CEM (15×2c), CEM (15×1c) and FEM

By CEM (15×2c) (Hz) By CEM (15×1c) (Hz)
c-DOF:30 c-DOF:15 By FEM (Hz)

Order Total-DOF:44 Total-DOF:29 Total-DOF:14

v1 679·82 679·82 682·27
v2 1139·34 1139·38 1149·30
v3 1582·18 1582·39 1612·35
v4 2410·25 2411·84 2519·87
v5 2601·85 2604·12 2715·76
v6 2815·44 2818·30 2968·22
v7 3293·26 3300·49 3573·36
v8 3811·37 3824·74 4207·78
v9 4480·52 4507·65 5134·74
v10 4707·91 4746·38 5399·56
v11 6069·27 6189·38 7163·28
v12 6341·62 6493·48 7471·07
v13 6455·52 6623·73 7586·07
v14 7381·06 7386·07 8462·58
v15 7604·45 8047·93
v16 8047·93 8319·71
v17 8325·93 8986·32
v18 8771·85 9487·92
v19 9578·30 10492·01
v20 10257·94 11570·63
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Figure 15. The first-order natural mode of 15-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v1CEM =679·82 Hz; v1FEM =682·27 Hz.

Figure 16. The 14th-order natural mode of 15-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v14CEM =7381·06 Hz; v14FEM =8462·58 Hz.

Figure 17. The 20th-order natural mode of 15-bar truss. — — —, by CEM (7×2c); ---, by FEM;
v20CEM =10 257·94 Hz.

6. REMARKS

It has been noted that the conventional FEM possesses some excellent
characteristics such as extreme versatility and effectiveness for solving elliptic
differential equations. Moreover, the classical theory can supply the exact or
near-exact analytical solution to some regular components, such as longitudinal
bar, torsional shaft, bending beam, etc., under simple boundary conditions. This
paper has addressed the possibility of combination of these two methods by the
Rayleigh–Ritz principle, resulting in developing a new numerical approach for
structural dynamics: Composite Element Method. The related characteristics and
convergency of CEM are summarized as follows.

(1) As has been said above, Composite Element Method is proposed by
combining the conventional FEM and classical theory, and therefore, theoretically
speaking, it inherits the typical characteristics of the FEM and classical theory,
i.e., powerful versatility of the FEM in dealing with various complex geometric
shapes and boundary conditions, and the excellent approximation and
superconvergency of the classical theory.
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(2) The core of CEM is to choose a special combined function as the trial
function of a displacement field, which consists of two parts: the nodal
interpolation polynomials of the FEM and a series of analytical solutions under
the zero-boundary condition using the classical theory. The series of the combined
trial functions are also admissible, so that they can be used within the
Rayleigh–Ritz principle. Meanwhile the requirement for completeness and
compatibility can be entirely satisfied if the interpolation polynomials of the
displacement field of the FEM can guarantee it. Actually, the longitudinal bar
element, the torsional shaft element and the bending beam element in CEM to be
developed later are complete and compatible.

(3) In order to get a more accurate solution, two approaches are available to
improve CEM, the h-version and the c-version. Without any exception, the
h-version of CEM just like that of FEM is to refine the element mesh. However,
the c-version of CEM is defined as increasing of the c-DOF (i.e., increasing the
trial function terms obtained from the analytical solution of the classical theory),
which is not similar to the p-version of the conventional FEM. A large number
of numerical examples show the c-version of CEM is of paramount significance
in obtaining the fine approximate solution in structural dynamics.

(4) It can be found that a superconvergence appears in CEM to solve structural
dynamical problems. The reason lies in that the trial function used in CEM
involves a set of hierarchical analytical bases obtained from the classical theory,
instead of the usual polynomial bases. It means that the trial functions already
inherently include the properties of various modes of components. The c-version
is, in some sense, related to the theory of spectral method. Therefore, the use of
the c-version of CEM results in achieving an improved approximate solution for
less computational effort than the use of mesh refinement.
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